Biomass Potential and Cost Assessment through the European Forest and Agricultural Sector Optimization Model

Chrystalyn Ivie S. Ramos
Uwe A. Schneider
Christine Schleupner

Research Unit Sustainability and Global Change
Centre for Marine and Atmospheric Sciences
Hamburg University, Germany

Workshop on Biomass Resources and Bioenergy in Norway and other Nordic Countries
Oslo, Norway, 23-25 September 2009
EUFASOM Model Presentation

- Partial equilibrium model (endogenous prices)
- Bottom-up approach
- Computes agricultural and forest market equilibrium (optimization model)
- Constrained by resource endowments, technologies, policies
- Spatially explicit, dynamic
- Data intensive, comprehensive
- Integrates environmental effects
- Programmed in GAMS, Solved as LP
The EUFASOM Model

• General Objective
 To advice policy makers about the agricultural and forestry sector response to structural changes based on:

a) Policies
b) Environmental change
c) Technical change
d) Socioeconomic change

• Specific Objective
 EUFASOM aims at integrated assessments of food, climate, biodiversity, bioenergy and water issues from different land use options.
Biomass and Bioenergy Investigations in EUFASOM

• Objectives

– investigate biomass and bioenergy technical and competitive economic potentials in Europe

– analyze the impacts of biomass and bioenergy production on food sustainability, biodiversity, regional and international trade and its related marginal costs

– assess CO$_2$ mitigation potentials in Europe
Economic Potentials of Biomass and Bioenergy

• Direct Production Costs
• Opportunity Costs (land scarcity, markets)
• External Costs (Non-market impacts)
 – GHG Emissions (Offsets, Leakage)
 – Biodiversity and Ecosystems
 – Soil Quality
 – Food Security
 – Landscape
Biomass and Bioenergy Economics in EUFASOM

• Farm and Processing Plant level economics - Microeconomics

• Economics of international agricultural and forest markets – Macroeconomics

• Externalities – Policy Analysis
Microeconomic Data
1: Conventional Technologies

• Sources:
 – Farm Accountancy Data Network Database
 – Food and Agriculture Organization of the United Nations Statistical Databases & Data-sets

• Farm budgets
 – Yields
 – Inputs
 – Costs

• Automated Data Processing & Integration
Microeconomic Data
2: Adaptation Technologies

- New Technologies
 - New agricultural production methods
 - New bioenergy processes
- Existing Technologies without data
 - Crop management adaptations
 - Processing plants
Macroeconomics in EUFASOM

Price

P*

Consumer Surplus

Producer Surplus

Supply

Demand

Q*

Quantity
EUFASOM Model Structure

- **Resources**
- **Inputs**
- **Supply Functions**
- **Land Use Technologies**
- **Environmental Impacts**
- **Processing Technologies**
- **Products**
- **Markets**
- **Demand Functions, Trade**
- **Limits**

Research Unit Sustainability and Global Change
Centre for Marine and Atmospheric Sciences
Technological Data: Biomass

- **Indicative producer prices**

<table>
<thead>
<tr>
<th>Biomass Type</th>
<th>Average Cost (EUR/ tone)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscanthus</td>
<td>~ 53</td>
</tr>
<tr>
<td>RCG</td>
<td>~ 40</td>
</tr>
<tr>
<td>Willow</td>
<td>~ 70</td>
</tr>
<tr>
<td>Pulp</td>
<td>~ 50</td>
</tr>
<tr>
<td>Timber</td>
<td>~ 100</td>
</tr>
</tbody>
</table>

Sources: Defra/DTI (2007), UK Biomass Strategy
Technological Data: Bioenergy

- Indicative market prices

<table>
<thead>
<tr>
<th>Sector</th>
<th>Price</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioelectricity</td>
<td>30-40</td>
<td>EUR/MWh</td>
</tr>
<tr>
<td>Bioheat</td>
<td>10-20</td>
<td>EUR/MWh</td>
</tr>
<tr>
<td>Biofuels</td>
<td>50-70</td>
<td>EUR/hL</td>
</tr>
<tr>
<td>Biogas for transport</td>
<td>~ 100</td>
<td>EUR/hL</td>
</tr>
<tr>
<td>Biogas for electricity</td>
<td>15-20</td>
<td>EUR/MWh</td>
</tr>
</tbody>
</table>

Sources:
- http://www.eubia.org/
- http://www.ebio.org/
- ENFA Consortium (2008)
European Biomass Resources

- EU Consumption (2006):
 Source: http://www.eubia.org/
 - Primary energy: > 2000 mtoe
 - Solid biomass*: ~ 62.4 mtoe (3.7%)

- EU guideline on biomass use (EU25):
 - by 2010^: ~ 150 mtoe ~ 360 M dry ton biomass
 - by 2020: ~ 217 mtoe ~ 520 M dry ton biomass

* Includes biomass to heat, electricity, biofuels
^ Conversion: 1 toe ~ 2.4 dry ton biomass
Bioenergy Indicative Targets by 2010

- 15% ~ 62 mtoe for heat/electricity
- 5.75% ~ 18 mtoe for biofuels

Scenario Analysis Results

- Economic Potentials
- Technical Potentials
- Impact on Food, Consumption and Trade
- Impact on Biodiversity
 - Grasslands
 - Wetlands
Scenario: Biomass Potential Assessment

- **Technical Potential**: By 2010
 - Biomass Price in Euro/ton
 - EU25 Biomass Demand in million dry tons

- Competitive Economic Potential
- Technical Potential (simulated)
- 2006 consumption

2006 consumption ~150 M dry tons
Broek van den et al (2003)
Scenario: Bioenergy Potential Assessment

EU25 Bioenergy Demand in 1000 MWh (all sectors)

Bioenergy Price in Euro/MWh

Technical Potential

Competitive Economic Potential
Scenario: Biofuel Cost-Supply Functions

Marginal Biofuel Cost in Euro/hl vs. EU25 Biofuel Production in mill hl

- Bioethanol (red)
- Biodiesel (green)
- Biofuel (blue)
Impact on Food Price, Consumption and Trade

- Net Export Volume in Billion Euros
- Fisher Index for Food Price and Consumption
- EU25 Bioenergy Demand in million MWh

- Price
- Consumption
- Net Export

Impact on Food Price, Consumption and Trade

Research Unit Sustainability and Global Change
Centre for Marine and Atmospheric Sciences
Impact on Biodiversity: Grassland

Bioenergy Subsidy in Euro/MWh

EU 25 Bioenergy Demand in 1000 MWh

KeepGrassland_Biofuel
KeepGrassland_Biogas
KeepGrassland_BioElec
KeepGrassland_AllBioEn
ConvertGrassland_AllBioEn
Impact on Biodiversity: Grassland

EU25 Energy crop area in million ha

Bioenergy Subsidy in Euro/ha

Protect existing grassland areas

- Northern Europe
- Western Europe
- Central Europe
- Eastern Europe
- Southern Europe
- EU25 Countries

Protect existing grassland areas
Impact on Biodiversity: Grassland

EU25 Energy crop area in million ha

Bioenergy Subsidy in Euro/ha

Northern Europe
Western Europe
Central Europe
Eastern Europe
Southern Europe
EU25 Countries

Unprotect existing grassland areas
Scenario: Bioenergy and Wetlands

Wetlands = 40 Mha

EU25 Biomass Production in million wet tons

Marginal Biomass Cost in Euro/ton

10 Mha

30 Mha

40 Mha
Impact on Biodiversity: Wetlands

![Graph showing the impact on EU25 wetland area in Million ha with incentives in Euro/ha. The graph includes lines for different biomass targets: 0%, 25%, 50%, 75%, and 100%. Each line represents the increase in wetland area at different incentive levels.]

Protect existing wetland areas

Biomass Targets:
- 0%
- 25%
- 50%
- 75%
- 100%
Impact on Biodiversity: Wetlands

EU25 Wetland area in Million ha

- Biomass Target 0%
- Biomass Target 25%
- Biomass Target 50%
- Biomass Target 75%
- Biomass Target 100%

Unprotect existing wetland areas

Incentive in Euro/ha

Research Unit Sustainability and Global Change
Centre for Marine and Atmospheric Sciences
EUFASOM Applications

• Applied in a number of EU Projects
 – EC4MACS (EU-LIFE Program)
 – FP6
 • NEEDS
 • European Non-Food Agriculture
 • TranSust.Scan
 • GEO-BENE
 – FP7
 • Biomass Energy Europe
 • EuroGEOSS
 • CCTAME
 • LULUCF Projections (in cooperation with EC-JRC)
Thank you!

Chrystalyn Ivie S. Ramos
ivie.ramos@zmaw.de
http://www.fnu.zmaw.de/