Bayesian Modeling of Time Trends In Component Reliability Data

Dana Kelly
Idaho National Laboratory
Dana.Kelly@inl.gov
Bayesian Modeling of Time Trends In Component Reliability Data

• **Purpose**
 – Illustrate Bayesian modeling of changing reliability for both nonrepairable and repairable components

• **Objectives**
 – Via examples using WinBUGS, will show how Markov chain Monte Carlo (MCMC) simulation can be used for parametric statistical modeling of cases where component reliability is changing over time
 – Will illustrate approaches to Bayesian model validation
Example Valve Leakage Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Failures</th>
<th>Demands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>52</td>
</tr>
</tbody>
</table>

Model for Number of Leakage Events

- Simplest model is $X \sim \text{binomial}(p, n)$
 - Usual binomial assumption is p constant
- Simplest approach to estimating p is to pool data
- Is this valid?
Is There a Time Trend in p?

- Graph appears to indicate increasing trend in time, but there's lots of uncertainty
Possible Models for p

- **Constant p (no time trend)**
 - Null hypothesis

- **Models for time trend**
 - Logistic
 - $\text{Logit}(p) = \ln(p/(1 - p)) = a + bt$
 - Probit
 - $\text{Probit}(p) = \Phi^{-1}(p) = a + bt$
Constant p

- Will use Jeffreys prior, but could use other noninformative priors or informative prior if desired
- Pooling data (36 failures in 468 demands) gives posterior mean of 0.08
- 90% interval for p is (0.06, 0.099)
Bayesian Model Validation – A First Vital Aside

• Analysis should not stop with parameter estimates

• In Bayesian framework, “model” comprises
 – Likelihood function
 • How data were generated
 – Prior distribution
 • Uncertainty about parameters

• Bayesian inference sometimes criticized for sensitivity to prior
 – In practice, likelihood function can also be in question

• Need to check both parts of our “model”
Prior Predictive Distribution

- The prior predictive distribution is the denominator of Bayes’ Theorem

\[f(x) = \int f(x | \theta) \pi_0(\theta) d\theta \]

- Gives probability of observing \(X = x \), unconditional upon any particular value of the parameter(s), \(\theta \)
 - Also called the marginal distribution of \(X \)

- Before observing data, can check reasonableness of prior by calculating probabilities for data we expect to see
 - Small probabilities \(\Rightarrow \) prior not consistent with expected data
 - Sometimes called “preposterior analysis”

- Not defined for improper priors (e.g., Jeffreys prior for Poisson data)
Posterior Predictive Distribution

- Gives conditional probability of seeing a new set of data, x_{rep}, given the old set, x
- In symbols

$$f(x_{\text{rep}} | x) = \int f(x_{\text{rep}} | \theta) \pi(\theta | x) d\theta$$

- Posterior predictive distribution is primary tool for Bayesian model validation
 - Focuses on predictive validity of model (prior + data)
Using Posterior Predictive Distribution to Check Model

- Is \(x_{rep} \) in tail of \(f(x_{rep}|x) \)?
 - No \(\Rightarrow \) model OK
 - Yes \(\Rightarrow \) problem with prior and/or likelihood
 - Check prior sensitivity
 - Prior-dominated: sharp prior, sparse data, likelihood function centered away from mode of prior
 - Check appropriateness of likelihood
 - For example, are failures independent?
Summary Statistics From Posterior Predictive Distribution

• In addition to x_{rep}, can use summary statistic $T(x)$ (e.g., chi-square)

 – If $Pr[T(x_{rep}) \geq T(x_{obs})]$ is small \Rightarrow model has limited validity with respect to replicating observed data

• If model cannot replicate observed data reasonably well, it should definitely not be used for extrapolation or prediction
Bayesian Analog of Chi-Square Statistic

\[\chi^2 = \left(\frac{x - E(X)}{E(X)} \right)^2 \]

- In frequentist statistics, \(\chi^2 \) is a positive real number calculated from the observed data, which is compared to percentiles of a theoretical chi-square distribution, usually under asymptotic assumptions.

- If “observed” value of \(\chi^2 \) is in upper tail of this distribution, reject model.

 - Traditionally compare against 95\(^{th}\) percentile.
Bayesian Analog of Chi-Square Statistic

• In Bayesian framework, both χ_{obs}^2 and χ_{rep}^2 have a distribution (not necessarily a chi-square distribution)
 – Distributions are simulated via MCMC
• Compare overlap of distributions
 – If $\Pr(\chi_{\text{rep}}^2 \geq \chi_{\text{obs}}^2)$ is small, model is suspect
 • Will refer to $\Pr(\chi_{\text{rep}}^2 \geq \chi_{\text{obs}}^2)$ as “p-value” in what follows
 – Can use to pick best model among several choices
• Note that Bayesian analog does not require data to be binned, as required in frequentist approach
Using DIC to Compare Relative Fit of Multiple Models

- **Deviance** is defined as \(-2 \times \log(\text{likelihood})\)
 - Measure of goodness of fit
- Take average deviance over posterior:
 \[
 D_{\text{bar}} = -2 \int \ln[f(y | \theta)\pi_1(\theta | y)]d\theta
 \]
 - \(D_{\text{bar}}\) is automatically monitored by WinBUGS node called “deviance”
- Deviance Information Criterion: \(\text{DIC} = D_{\text{bar}} + pD\)
 - \(pD\) is effective number of parameters
 - \(pD = D_{\text{bar}} - D_{\hat{}}\)
 - \(D_{\hat{}}\) is deviance evaluated at posterior mean of parameter(s)
Using DIC to Compare Relative Fit of Multiple Models

- Preferred model is one with smallest DIC
 - Has highest chance of replicating data set
- Models with more parameters (i.e., more complex models) are penalized via pD
 - Recall Occam’s Razor/Parsimony Principle
- DIC must be measured on same data
- Must have adequate convergence before estimating DIC!!!
Using DIC to Compare Relative Fit of Multiple Models

• DIC (and even pD) can be negative in some cases
 – DIC negative when density function is > 1
 • Smallest DIC still indicates best fitting model
 – Example: three models with DICs of 10, -3, -9
 • Third model, with DIC = -9, is best fit
 – If pD is negative, cannot use DIC
 – Can use Dbar, but use caution if models have different number of parameters, because there is no penalty for over-parametrizing

• DIC is measure of relative goodness of fit
 – Model with smallest DIC can still be poor fit
Constant p Model for Valve Leakage Probability Revisited

- **Bayesian chi-square goodness-of-fit:**
 - \(p \text{.value} = 0.15 \)

- **Deviance information criterion (DIC) for comparison with logistic and probit models:**

![Deviance information table](image-url)
Logistic Model: \(\text{Logit}(p) = a + bt \)

- *WinBUGS model*

Logistic model for time trend in valve leakage model

```plaintext
for (i in 1:N) {
    x[i] ~ dbin(p[i], n[i]) # Binomial distribution for failures in each year
    logit(p[i]) <- a + b*i # Use of logit() link function for p[i]
}

a~dflat() # Diffuse prior for a
b~dflat() # Diffuse prior for b
```
Multi-Parameter Models: Monitoring Convergence Is Essential (Second Vital Aside)

- **MCMC is both art and science**
- **Must choose initial values for sampling**
 - Best to pick values where posterior density is large
 - **MLEs (or modes of marginal distribution) often a good choice, if available**
 - Care in choosing initial values usually not an issue except for very complicated models
 - Less complicated models will usually converge quickly even with poor initial estimates
Monitoring Convergence – Three Questions

- How to tell when Markov chain has converged
 - How many samples needed for burn in?
 - Markov chain is stationary after burn-in
 - Has sampler obtained good coverage of posterior?
 - How many samples needed for desired precision?
 - Determined by amount of information in prior and data
How Many Samples for Burn In?

- Use History plot in WinBUGS, monitoring from first sample
 - Not enough samples
 - Better
Good Coverage of Posterior?

- Run multiple chains, starting at different points
- Look for good mixing of chains
 - Poor mixing
 - Good mixing
How Many Samples After Convergence?

- *WinBUGS* manual suggests running until Monte Carlo error is 5% or less of sample mean for each parameter.
- None of the three aspects of convergence tends to be a problem for simple models.
 - But do not forget about it!
Convergence Diagnostics - BGR

• Brooks-Gelman-Rubin (BGR) statistic is implemented in WinBUGS
 – Overview
 • Compares estimates of between-chain variance and within-chain variance
 – If chains have converged, all should have same within-chain variance
 – $\text{BGR} \approx 1$ indicates convergence
 • Must run at least 2 chains to calculate BGR statistic
Convergence Diagnostics - BGR

• Details
 – Between-chain estimate is green
 – Within-chain estimate is blue
 – Ratio (between/within) is red
 • Ratio expected to start out > 1 and converge to 1
 – Rule of thumb: $R < 1.2$ for convergence
 • Also want between-chain and within-chain estimates to be stable
 • Double-click on BGR graph, then left click to see precise values of R
Convergence Diagnostics - BGR

- Example

- Indicates convergence
Monitoring Convergence - Summary

• For each parameter in the model
 – Run multiple chains and monitor history plots to check for adequate mixing of chains
 – Check BGR plot
 – Check MC error relative to mean value
Logistic Model for Valve Leakage Probability: $\text{Logit}(p) = a + bt$

• **Results**

 - $Pr(b > 0)$ is > 0.95
 - Strong evidence of increasing trend in p over time
Logistic Model: \(\text{Logit}(p) = a + bt \)

- **Results for \(p \) in each year:**

 ![Node statistics table](image)

 - **Recall estimate with constant \(p \) (pooled estimate)**
 - **Mean** = 0.08, (0.06, 0.099)
Logistic Model: $\text{Logit}(p) = a + bt$

- *Uncertainty in } p \text{ for each year*
Logistic Model: Logit(p) = a + bt

- Bayesian chi-square goodness-of-fit:
 - p.value = 0.47
- Significantly better than constant-p model (0.15)
- Deviance information criterion (DIC) for comparison with constant-p and probit models:
 - Significantly better than constant-p model (44.26)
Predicting p In Future Years

- Can use MCMC to predict distribution of p in future years
- Example: What is p in the 10^{th} year?
- Code: $\text{logit}(p[10]) \leftarrow a + b*10$
Predicting p In Future Years

• Results

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>val5.0pc</th>
<th>median</th>
<th>val95.0pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[1]</td>
<td>0.04171</td>
<td>0.01501</td>
<td>3.214E-4</td>
<td>0.02066</td>
<td>0.03981</td>
<td>0.06913</td>
</tr>
<tr>
<td>p[2]</td>
<td>0.04749</td>
<td>0.01429</td>
<td>3.008E-4</td>
<td>0.02662</td>
<td>0.04611</td>
<td>0.07508</td>
</tr>
<tr>
<td>p[3]</td>
<td>0.05427</td>
<td>0.01344</td>
<td>2.691E-4</td>
<td>0.03405</td>
<td>0.05326</td>
<td>0.07767</td>
</tr>
<tr>
<td>p[4]</td>
<td>0.06221</td>
<td>0.01262</td>
<td>2.232E-4</td>
<td>0.04285</td>
<td>0.06147</td>
<td>0.09414</td>
</tr>
<tr>
<td>p[5]</td>
<td>0.07151</td>
<td>0.01232</td>
<td>1.609E-4</td>
<td>0.05266</td>
<td>0.07086</td>
<td>0.09283</td>
</tr>
<tr>
<td>p[6]</td>
<td>0.0824</td>
<td>0.01336</td>
<td>9.171E-5</td>
<td>0.06146</td>
<td>0.06171</td>
<td>0.1057</td>
</tr>
<tr>
<td>p[7]</td>
<td>0.09513</td>
<td>0.01665</td>
<td>1.138E-4</td>
<td>0.06919</td>
<td>0.09442</td>
<td>0.1238</td>
</tr>
<tr>
<td>p[8]</td>
<td>0.1099</td>
<td>0.02255</td>
<td>2.582E-4</td>
<td>0.07524</td>
<td>0.1067</td>
<td>0.1491</td>
</tr>
<tr>
<td>p[9]</td>
<td>0.127</td>
<td>0.03108</td>
<td>4.641E-4</td>
<td>0.08027</td>
<td>0.1247</td>
<td>0.1819</td>
</tr>
<tr>
<td>c[T01]</td>
<td>0.1466</td>
<td>0.04214</td>
<td>7.221E-4</td>
<td>0.08602</td>
<td>0.1429</td>
<td>0.2222</td>
</tr>
</tbody>
</table>
Probit Model: $\Phi^{-1}(p) = a + bt$

- *WinBUGS model*

```plaintext
Probit model for time trend in valve leakage model
{
    for (i in 1:7) {
        x[i] ~ dbin(p[i], n[i]) #Binomial distribution for failures in each year
        probit(p[i]) <- a + b*i #Use of probit() link function for p[i]
    }
    a~dflat() #Diffuse prior for a
    b~dflat() #Diffuse prior for b
}
```
Probit Model: $\Phi^{-1}(p) = a + bt$

- **Results**

 ![Node statistics](image1)

 ![Posterior density](image2)

 - Again, $Pr(b > 0)$ is close to unity
 - Strong evidence of increasing trend in p
Probit Model: $\Phi^{-1}(p) = a + bt$

- Results for p in each year:
Probit Model: $\Phi^{-1}(p) = a + bt$

- Uncertainty in p for each year
Probit Model: $\Phi^{-1}(p) = a + bt$

- Bayesian chi-square goodness-of-fit:
 - p.value = 0.46
- Essentially same as logit model
- Deviance information criterion (DIC) for comparison with constant-p and logit models:

```
Deviance information

<table>
<thead>
<tr>
<th></th>
<th>Dbar</th>
<th>Dhat</th>
<th>DIC</th>
<th>pD</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>35.97</td>
<td>33.94</td>
<td>38.0</td>
<td>2.032</td>
</tr>
<tr>
<td>total</td>
<td>35.97</td>
<td>33.94</td>
<td>38.0</td>
<td>2.032</td>
</tr>
</tbody>
</table>
```

- Equivalent to logit model
Conclusions

- Strong evidence of increasing trend in p
 - p-value for logit and probit models significantly better than model with constant p
 - Slight analyst preference for logistic model over probit model
- Can specify distribution for p in each year as logistic-normal
 - Logistic-normal distribution can be interpreted as constrained lognormal distribution (Kelly, 1992)
- Ignoring trend gives overly confident estimate of p
 - Especially a problem for extrapolating to future years
Modeling Time Trends In λ

- Will use example data supplied by Andrei Rodionov
- Data are in form of number of failures in each of 20 years
 - Have data on exposure time for each year
- Number of failures (x_i) in each year will be Poisson with parameter λ_it_i
- λ may be a function of time
 - Leads to non-homogeneous Poisson process (NHPP)
Example Data – Component 13

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Failures</th>
<th>Exposure Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>176.046</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>244.472</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>314.672</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>371.008</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>434.02</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>457.732</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>499.988</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>581.386</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>571.62</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>533.176</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>527.394</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>492.86</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>440.062</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>371.584</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>301.392</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>245.052</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>182.064</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>156</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>102.156</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>9.036</td>
</tr>
</tbody>
</table>
Graphical Check for Time Trend in λ

![Caterpillar plot for λ](image)
Need Model for $\lambda(t)$

- Many possibilities:
 - Constant: $\lambda(t) = \lambda_o$
 - Linear: $\lambda(t) = \lambda_o + at$
 - Log-linear: $\ln[\lambda(t)] = a + bt$
 - Power law: $\lambda(t) = (\alpha/\beta)(t/\beta)^{\alpha-1}$
 - Extended power law: $\lambda(t) = \alpha\lambda_o t^{\alpha-1} + \lambda_{\text{ext}}$

- No theoretical justification for any of these
- Will illustrate first three in WinBUGS
WinBUGS Script

Models for time trend in lambda model
{
 for (i in 1:N) {
 #lambda[i] <- lambda.zero #Constant model
 #log(lambda[i]) <- a + b*i #Loglinear model
 #lambda[i] <- alpha/beta*pow(i/beta, alpha -1) #Power law model
 #lambda[i] <- lambda.zero + a*i #Linear model
 lambda[i] ~ dgamma(0.5, 0.0001) #Used for constructing waterfall plot
 mu[i] <- lambda[i]*s[i]
 x[i] ~ dpois(mu[i])
 x.rep[i] ~ dpois(mu[i])
 diff.obs[i] <- pow(x[i] - mu[i], 2)/mu[i]
 diff.rep[i] <- pow(x.rep[i] - mu[i], 2)/mu[i]
 }
 chisq.obs <- sum(diff.obs[])
 chisq.rep <- sum(diff.rep[])
 p.value <- step(chisq.rep - chisq.obs)
 #lambda.zero ~ dgamma(0.0001, 0.0001) #Diffuse prior on lambda.zero
 #a ~ dflat() #Diffuse prior on a
 #b ~ dflat() #Diffuse prior on b
 #alpha ~ dexp(1) #Diffuse prior on alpha
 #beta ~ dgamma(0.0001, 0.0001) #Diffuse prior on beta
}
Constant Model $\lambda(t) = \lambda_0$

- **Results**

<table>
<thead>
<tr>
<th>Node statistics</th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>val5.0pc</th>
<th>median</th>
<th>val95.0pc</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>lambda.zero</td>
<td>0.002987</td>
<td>6.521E-4</td>
<td>4.46E-6</td>
<td>0.002</td>
<td>0.002846</td>
<td>0.004129</td>
<td>1001</td>
<td>20000</td>
</tr>
</tbody>
</table>

![Node statistics](image1)

![Posterior density](image2)
Constant Model $\lambda(t) = \lambda_0$

- $p.val = 0.165$
- DIC (for comparison with other models)
Linear Model: $\lambda(t) = \lambda_0 + at$

- Results
Linear Model: $\lambda(t) = \lambda_0 + at$

- **Results**

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>val5.0pc</th>
<th>median</th>
<th>val95.0pc</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.528E-4</td>
<td>1.092E-4</td>
<td>5.094E-6</td>
<td>-2.948E-5</td>
<td>1.655E-4</td>
<td>3.32E-4</td>
<td>4001</td>
<td>14000</td>
</tr>
</tbody>
</table>

- **Significant** $Pr(a > 0) \Rightarrow$ aging
Linear Model: $\lambda(t) = \lambda_0 + at$

- $p.value = 0.14$
- DIC
- Equivalent to simpler model with constant λ
Linear Model: $\lambda(t) = \lambda_0 + at$

- Results for λ in each year:

<table>
<thead>
<tr>
<th>Node</th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>val5.0pc</th>
<th>median</th>
<th>val95.0pc</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>lambda[1]</td>
<td>0.001797</td>
<td>9.967E-4</td>
<td>4.288E-5</td>
<td>4.882E-4</td>
<td>0.001628</td>
<td>0.003697</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[2]</td>
<td>0.001956</td>
<td>9.133E-4</td>
<td>3.54E-5</td>
<td>7.944E-4</td>
<td>0.001794</td>
<td>0.003679</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[3]</td>
<td>0.002102</td>
<td>8.367E-4</td>
<td>3.417E-5</td>
<td>0.001013</td>
<td>0.001861</td>
<td>0.003685</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[4]</td>
<td>0.002255</td>
<td>7.668E-4</td>
<td>3.09E-5</td>
<td>0.001243</td>
<td>0.002129</td>
<td>0.003733</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[5]</td>
<td>0.002408</td>
<td>7.122E-4</td>
<td>2.593E-5</td>
<td>0.001441</td>
<td>0.002297</td>
<td>0.003745</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[6]</td>
<td>0.002562</td>
<td>6.697E-4</td>
<td>2.2E-5</td>
<td>0.001621</td>
<td>0.00247</td>
<td>0.003786</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[7]</td>
<td>0.002713</td>
<td>6.443E-4</td>
<td>1.831E-5</td>
<td>0.001779</td>
<td>0.002843</td>
<td>0.003854</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[8]</td>
<td>0.002865</td>
<td>6.378E-4</td>
<td>1.504E-5</td>
<td>0.001912</td>
<td>0.002817</td>
<td>0.003884</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[9]</td>
<td>0.003018</td>
<td>6.509E-4</td>
<td>1.253E-5</td>
<td>0.002024</td>
<td>0.002982</td>
<td>0.004169</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[10]</td>
<td>0.00317</td>
<td>6.824E-4</td>
<td>1.127E-5</td>
<td>0.00213</td>
<td>0.003131</td>
<td>0.004357</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[11]</td>
<td>0.003323</td>
<td>7.299E-4</td>
<td>1.169E-5</td>
<td>0.002212</td>
<td>0.003276</td>
<td>0.004597</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[12]</td>
<td>0.003475</td>
<td>7.907E-4</td>
<td>1.364E-5</td>
<td>0.002281</td>
<td>0.003426</td>
<td>0.004871</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[13]</td>
<td>0.003623</td>
<td>8.618E-4</td>
<td>1.556E-5</td>
<td>0.002334</td>
<td>0.003571</td>
<td>0.005165</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[14]</td>
<td>0.00378</td>
<td>9.409E-4</td>
<td>2.009E-5</td>
<td>0.002371</td>
<td>0.003709</td>
<td>0.00545</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[15]</td>
<td>0.003933</td>
<td>9.01023</td>
<td>2.381E-5</td>
<td>0.002391</td>
<td>0.003854</td>
<td>0.005755</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[16]</td>
<td>0.004085</td>
<td>9.01116</td>
<td>2.792E-5</td>
<td>0.002397</td>
<td>0.004002</td>
<td>0.006049</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[17]</td>
<td>0.004239</td>
<td>9.0121</td>
<td>3.204E-5</td>
<td>0.002401</td>
<td>0.004151</td>
<td>0.00637</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[18]</td>
<td>0.00439</td>
<td>9.01307</td>
<td>3.624E-5</td>
<td>0.00241</td>
<td>0.004301</td>
<td>0.006683</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[19]</td>
<td>0.004543</td>
<td>9.01406</td>
<td>4.056E-5</td>
<td>0.002396</td>
<td>0.004449</td>
<td>0.006988</td>
<td>22001</td>
<td>20000</td>
</tr>
<tr>
<td>lambda[20]</td>
<td>0.004685</td>
<td>9.01507</td>
<td>4.478E-5</td>
<td>0.002385</td>
<td>0.004608</td>
<td>0.007288</td>
<td>22001</td>
<td>20000</td>
</tr>
</tbody>
</table>
Linear Model: $\lambda(t) = \lambda_0 + at$

- Uncertainty in lambda for each year
Loglinear Model: $\ln[\lambda(t)] = a + bt$

- **Results**

- $Pr(b > 0)$ is large \Rightarrow aging
- Posterior distribution of b is approximately normal
Loglinear Model: $\ln[\lambda(t)] = a + bt$

- $p\text{.value} = 0.12$
- DIC

- Equivalent to simpler model with constant λ
Loglinear Model: \(\ln[\lambda(t)] = a + bt \)

- Results for lambda in each year:
Loglinear Model: $\ln[\lambda(t)] = a + bt$

- Uncertainty in lambda for each year
Power Law Model: $\lambda(t) = \left(\frac{\alpha}{\beta}\right)(t/\beta)^{\alpha-1}$

- **Results**

- $Pr(\alpha > 1)$ near 0.5 \Rightarrow no evidence for aging
Power Law Model: \(\lambda(t) = (\alpha/\beta)(t/\beta)^{\alpha-1} \)

- \(p\text{-value} = 0.11 \)
- \(DIC \)

<table>
<thead>
<tr>
<th>Deviance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>x</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

- Negative value for \(pD \)
 - Cannot use DIC in this case
 - Comparing Dbar indicates power-law model is slightly worse than linear or log-linear model
Power Law Model: \(\lambda(t) = \alpha \lambda_0 t^{\alpha - 1} \)

- Results for lambda in each year:

<table>
<thead>
<tr>
<th>lambda</th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>val5.0pc</th>
<th>median</th>
<th>val95.0pc</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>lambda[1]</td>
<td>0.00335</td>
<td>0.002348</td>
<td>4.235E-6</td>
<td>6.68E-4</td>
<td>0.002822</td>
<td>0.007803</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[2]</td>
<td>0.003025</td>
<td>0.001512</td>
<td>2.667E-6</td>
<td>0.001013</td>
<td>0.002734</td>
<td>0.005023</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[3]</td>
<td>0.002905</td>
<td>0.001143</td>
<td>1.853E-6</td>
<td>0.001276</td>
<td>0.002777</td>
<td>0.004973</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[4]</td>
<td>0.00236</td>
<td>0.251E-4</td>
<td>1.29E-6</td>
<td>0.001497</td>
<td>0.002766</td>
<td>0.004498</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[5]</td>
<td>0.002823</td>
<td>7.8E-4</td>
<td>8.532E-6</td>
<td>0.001947</td>
<td>0.002732</td>
<td>0.004213</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[6]</td>
<td>0.002912</td>
<td>8.982E-4</td>
<td>4.943E-6</td>
<td>0.001758</td>
<td>0.00275</td>
<td>0.004042</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[7]</td>
<td>0.00231</td>
<td>6.480E-4</td>
<td>2.192E-6</td>
<td>0.001326</td>
<td>0.002794</td>
<td>0.003951</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[8]</td>
<td>0.002814</td>
<td>6.288E-4</td>
<td>2.264E-6</td>
<td>0.001861</td>
<td>0.002796</td>
<td>0.003921</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[9]</td>
<td>0.002322</td>
<td>6.319E-4</td>
<td>4.507E-6</td>
<td>0.001936</td>
<td>0.002775</td>
<td>0.003969</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[10]</td>
<td>0.002833</td>
<td>6.518E-4</td>
<td>6.889E-6</td>
<td>0.001457</td>
<td>0.002731</td>
<td>0.003989</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[11]</td>
<td>0.002946</td>
<td>8.838E-4</td>
<td>9.144E-6</td>
<td>0.001896</td>
<td>0.002734</td>
<td>0.004067</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[12]</td>
<td>0.002861</td>
<td>7.238E-4</td>
<td>1.132E-6</td>
<td>0.001806</td>
<td>0.002796</td>
<td>0.004186</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[13]</td>
<td>0.002777</td>
<td>7.688E-4</td>
<td>1.34E-5</td>
<td>0.001779</td>
<td>0.002787</td>
<td>0.004278</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[14]</td>
<td>0.002893</td>
<td>8.180E-4</td>
<td>1.541E-5</td>
<td>0.001747</td>
<td>0.002736</td>
<td>0.0044</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[15]</td>
<td>0.00231</td>
<td>8.702E-4</td>
<td>1.734E-5</td>
<td>0.001715</td>
<td>0.002797</td>
<td>0.004531</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[16]</td>
<td>0.002326</td>
<td>9.231E-4</td>
<td>1.922E-5</td>
<td>0.001635</td>
<td>0.002736</td>
<td>0.004652</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[17]</td>
<td>0.002946</td>
<td>8.768E-4</td>
<td>2.104E-5</td>
<td>0.001652</td>
<td>0.002796</td>
<td>0.004801</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[18]</td>
<td>0.002864</td>
<td>0.008031</td>
<td>2.281E-5</td>
<td>0.001521</td>
<td>0.002796</td>
<td>0.004936</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[19]</td>
<td>0.002863</td>
<td>0.001066</td>
<td>2.454E-5</td>
<td>0.001593</td>
<td>0.002796</td>
<td>0.005076</td>
<td>60001</td>
<td>400000</td>
</tr>
<tr>
<td>lambda[20]</td>
<td>0.003032</td>
<td>0.001139</td>
<td>2.624E-5</td>
<td>0.001594</td>
<td>0.002791</td>
<td>0.005213</td>
<td>60001</td>
<td>400000</td>
</tr>
</tbody>
</table>
Power Law Model: $\lambda(t) = \alpha \lambda_0 t^{\alpha - 1}$

- Uncertainty in lambda for each year
Conclusions for Component 13

- Linear and log-linear models show slight evidence for aging
- Constant-\(\lambda\) model fits slightly better than either of these
- Power-law model suggests \(\lambda\) constant
 - Cannot use DIC in this case because \(pD\) negative
- Overall conclusion: no strong evidence against model with constant \(\lambda\)
Component 13 – First Ten Years Removed

- Models situation where repair occurs at 10 years
 - Component repaired to “as good as new”

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Failures</th>
<th>Exposure Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 (1)</td>
<td>0</td>
<td>527.394</td>
</tr>
<tr>
<td>12 (2)</td>
<td>1</td>
<td>492.86</td>
</tr>
<tr>
<td>13 (3)</td>
<td>0</td>
<td>440.062</td>
</tr>
<tr>
<td>14 (4)</td>
<td>3</td>
<td>371.584</td>
</tr>
<tr>
<td>15 (5)</td>
<td>0</td>
<td>301.392</td>
</tr>
<tr>
<td>16 (6)</td>
<td>3</td>
<td>245.052</td>
</tr>
<tr>
<td>17 (7)</td>
<td>1</td>
<td>182.064</td>
</tr>
<tr>
<td>18 (8)</td>
<td>1</td>
<td>156</td>
</tr>
<tr>
<td>19 (9)</td>
<td>1</td>
<td>102.156</td>
</tr>
<tr>
<td>20 (10)</td>
<td>0</td>
<td>9.036</td>
</tr>
</tbody>
</table>
Graphical Check for Time Trend in λ
Constant Model $\lambda(t) = \lambda_0$

- **Results**

![Node statistics table](image)

![Posterior density graph](image)
Constant Model $\lambda(t) = \lambda_0$

- $p\text{.value} = 0.17$
- DIC (for comparison with other models)
Linear Model: $\lambda(t) = \lambda_0 + at$

- Results
Linear Model: $\lambda(t) = \lambda_0 + at$

- **Results**

 ![Node statistics](image)

 ![Posterior density](image)

- **Significant** $Pr(a > 0) \Rightarrow$ aging
Linear Model: $\lambda(t) = \lambda_0 + at$

- $p.value = 0.52$
 - Indicates good absolute fit of linear model
- DIC

- Better relative fit than simpler model with constant λ
Linear Model: $\lambda(t) = \lambda_0 + at$

- Results for lambda in each year:

<table>
<thead>
<tr>
<th>Node</th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>val5.0pc</th>
<th>median</th>
<th>val95.0pc</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>lambda[1]</td>
<td>0.00101</td>
<td>0.039E-4</td>
<td>2.73E-5</td>
<td>7.2E-4</td>
<td>0.001399</td>
<td>0.00328</td>
<td>4001</td>
<td>34000</td>
</tr>
<tr>
<td>lambda[2]</td>
<td>0.002479</td>
<td>0.703E-4</td>
<td>2.14E-5</td>
<td>0.001325</td>
<td>0.002339</td>
<td>0.004049</td>
<td>4001</td>
<td>34000</td>
</tr>
<tr>
<td>lambda[3]</td>
<td>0.003349</td>
<td>0.01008</td>
<td>1.74E-5</td>
<td>0.001883</td>
<td>0.003243</td>
<td>0.005165</td>
<td>4001</td>
<td>34000</td>
</tr>
<tr>
<td>lambda[4]</td>
<td>0.004219</td>
<td>0.01232</td>
<td>1.68E-5</td>
<td>0.002382</td>
<td>0.004112</td>
<td>0.006406</td>
<td>4001</td>
<td>34000</td>
</tr>
<tr>
<td>lambda[5]</td>
<td>0.005068</td>
<td>0.01505</td>
<td>1.98E-5</td>
<td>0.002803</td>
<td>0.004857</td>
<td>0.007778</td>
<td>4001</td>
<td>34000</td>
</tr>
<tr>
<td>lambda[6]</td>
<td>0.005958</td>
<td>0.01906</td>
<td>2.52E-5</td>
<td>0.003312</td>
<td>0.005796</td>
<td>0.009199</td>
<td>4001</td>
<td>34000</td>
</tr>
<tr>
<td>lambda[7]</td>
<td>0.006527</td>
<td>0.0212</td>
<td>3.19E-5</td>
<td>0.003726</td>
<td>0.008658</td>
<td>0.01084</td>
<td>4001</td>
<td>34000</td>
</tr>
<tr>
<td>lambda[8]</td>
<td>0.007567</td>
<td>0.02446</td>
<td>3.91E-5</td>
<td>0.004071</td>
<td>0.007488</td>
<td>0.01209</td>
<td>4001</td>
<td>34000</td>
</tr>
<tr>
<td>lambda[9]</td>
<td>0.009567</td>
<td>0.02776</td>
<td>4.66E-5</td>
<td>0.004451</td>
<td>0.008334</td>
<td>0.01333</td>
<td>4001</td>
<td>34000</td>
</tr>
<tr>
<td>lambda[10]</td>
<td>0.009436</td>
<td>0.03111</td>
<td>5.43E-5</td>
<td>0.004893</td>
<td>0.009187</td>
<td>0.01499</td>
<td>4001</td>
<td>34000</td>
</tr>
</tbody>
</table>
Linear Model: $\lambda(t) = \lambda_0 + at$

- Uncertainty in lambda for each year
Predicted λ From Linear Model

- Results for λ in 11th year
Loglinear Model: \(\ln[\lambda(t)] = a + bt \)

- **Results**

 - \(\Pr(b > 0) \) is large \(\Rightarrow \) aging
 - *Posterior distribution of* \(b \) *is approximately normal*
Loglinear Model: $\ln[\lambda(t)] = a + bt$

- $p\.value = 0.32$
- DIC

![Deviance information](image)

- Better fit than simpler model with constant λ
- Not quite as good as linear model
Loglinear Model: \(\ln[\lambda(t)] = a + bt \)

- Results for lambda in each year:
Loglinear Model: $\ln[\lambda(t)] = a + bt$

- Uncertainty in lambda for each year
Predicted \(\lambda \) From Loglinear Model

- Results for \(\lambda \) in 11\(^{th} \) year

<table>
<thead>
<tr>
<th>Node</th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>val5.0pc</th>
<th>median</th>
<th>val95.0pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>lambda[1]</td>
<td>0.001356</td>
<td>9.203E-4</td>
<td>4.431E-5</td>
<td>3.015E-4</td>
<td>0.001157</td>
<td>0.003135</td>
</tr>
<tr>
<td>lambda[2]</td>
<td>0.001702</td>
<td>9.536E-4</td>
<td>4.553E-5</td>
<td>4.871E-4</td>
<td>0.001543</td>
<td>0.003494</td>
</tr>
<tr>
<td>lambda[3]</td>
<td>0.00217</td>
<td>0.001</td>
<td>4.473E-5</td>
<td>7.912E-4</td>
<td>0.002046</td>
<td>0.003993</td>
</tr>
<tr>
<td>lambda[4]</td>
<td>0.00281</td>
<td>0.001078</td>
<td>4.11E-5</td>
<td>0.001261</td>
<td>0.002705</td>
<td>0.004769</td>
</tr>
<tr>
<td>lambda[5]</td>
<td>0.003086</td>
<td>0.001242</td>
<td>3.298E-5</td>
<td>0.00192</td>
<td>0.003674</td>
<td>0.00694</td>
</tr>
<tr>
<td>lambda[6]</td>
<td>0.004841</td>
<td>0.00182</td>
<td>2.311E-5</td>
<td>0.002681</td>
<td>0.004745</td>
<td>0.00786</td>
</tr>
<tr>
<td>lambda[7]</td>
<td>0.006712</td>
<td>0.002433</td>
<td>4.474E-5</td>
<td>0.003296</td>
<td>0.006394</td>
<td>0.01125</td>
</tr>
<tr>
<td>lambda[8]</td>
<td>0.00677</td>
<td>0.004017</td>
<td>1.156E-4</td>
<td>0.003941</td>
<td>0.00707</td>
<td>0.01609</td>
</tr>
<tr>
<td>lambda[9]</td>
<td>0.01302</td>
<td>0.006936</td>
<td>2.508E-4</td>
<td>0.004329</td>
<td>0.01172</td>
<td>0.02625</td>
</tr>
<tr>
<td>lambda[10]</td>
<td>0.01659</td>
<td>0.01222</td>
<td>4.988E-4</td>
<td>0.004794</td>
<td>0.01576</td>
<td>0.04174</td>
</tr>
<tr>
<td>lambda[11]</td>
<td>0.02701</td>
<td>0.02185</td>
<td>9.444E-4</td>
<td>0.005246</td>
<td>0.02113</td>
<td>0.06679</td>
</tr>
</tbody>
</table>
Power Law Model: $\lambda(t) = (\alpha/\beta)(t/\beta)^{\alpha-1}$

- **Results**

- $Pr(\alpha > 1)$ significant \Rightarrow positive evidence for aging
Power Law Model: \(\lambda(t) = (\alpha/\beta)(t/\beta)^{\alpha-1} \)

- \(p\.value = 0.42 \)
 - Indicates good absolute fit of power-law model

- DIC
 - Negative value for \(pD \)
 - Cannot use DIC in this case
 - \(Dbar \) comparable to linear model
Power Law Model: $\lambda(t) = \alpha \lambda_0 t^{\alpha-1}$

- Results for lambda in each year:

![Node statistics table]

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>val5.0pc</th>
<th>median</th>
<th>val95.0pc</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>lambda[1]</td>
<td>0.001259</td>
<td>0.001084</td>
<td>2.353E-5</td>
<td>1.603E-4</td>
<td>9.483E-4</td>
<td>0.003416</td>
<td>10001</td>
<td>200000</td>
</tr>
<tr>
<td>lambda[2]</td>
<td>0.001985</td>
<td>0.001058</td>
<td>1.885E-5</td>
<td>5.945E-4</td>
<td>0.001808</td>
<td>0.003965</td>
<td>10001</td>
<td>200000</td>
</tr>
<tr>
<td>lambda[3]</td>
<td>0.00274</td>
<td>0.001067</td>
<td>1.159E-5</td>
<td>0.001209</td>
<td>0.00262</td>
<td>0.004674</td>
<td>10001</td>
<td>200000</td>
</tr>
<tr>
<td>lambda[4]</td>
<td>0.003541</td>
<td>0.001167</td>
<td>5.042E-6</td>
<td>0.001851</td>
<td>0.00322</td>
<td>0.00566</td>
<td>10001</td>
<td>200000</td>
</tr>
<tr>
<td>lambda[5]</td>
<td>0.004392</td>
<td>0.001426</td>
<td>1.55E-5</td>
<td>0.002345</td>
<td>0.004237</td>
<td>0.006977</td>
<td>10001</td>
<td>200000</td>
</tr>
<tr>
<td>lambda[6]</td>
<td>0.005297</td>
<td>0.001866</td>
<td>3.289E-5</td>
<td>0.002662</td>
<td>0.005074</td>
<td>0.0087</td>
<td>10001</td>
<td>200000</td>
</tr>
<tr>
<td>lambda[7]</td>
<td>0.006256</td>
<td>0.00248</td>
<td>5.375E-5</td>
<td>0.002865</td>
<td>0.005895</td>
<td>0.01085</td>
<td>10001</td>
<td>200000</td>
</tr>
<tr>
<td>lambda[8]</td>
<td>0.007272</td>
<td>0.00326</td>
<td>7.863E-5</td>
<td>0.003013</td>
<td>0.006715</td>
<td>0.0134</td>
<td>10001</td>
<td>200000</td>
</tr>
<tr>
<td>lambda[9]</td>
<td>0.008346</td>
<td>0.004202</td>
<td>1.075E-4</td>
<td>0.003124</td>
<td>0.007527</td>
<td>0.01628</td>
<td>10001</td>
<td>200000</td>
</tr>
<tr>
<td>lambda[10]</td>
<td>0.009477</td>
<td>0.005308</td>
<td>1.404E-4</td>
<td>0.003211</td>
<td>0.008315</td>
<td>0.01955</td>
<td>10001</td>
<td>200000</td>
</tr>
</tbody>
</table>
Power Law Model: $\lambda(t) = \alpha \lambda_0 t^{\alpha-1}$

- Uncertainty in lambda for each year
Predicted λ From Power-Law Model

- Results for λ in 11th year
Conclusions for Component 13 With First Ten Years Removed

• Significant evidence of aging
• Linear and power-law models provide best fit
 – Log-linear model also provides adequate fit
Modeling Repairable Components

- In this case, component is repaired when failure is detected
- Three potential situations:
 - Repairs tend to improve component over time (reliability growth, Ascher’s “happy” system)
 - Repairs maintain failure rate at essentially constant value
 - Repairs ineffective at preventing aging (Ascher’s “sad” system)
 - In first and third case, observed failure times are not independent and identically distributed – not from a renewal process
 - Cannot simply fit distribution to data
 - Will handle these situations via non-homogeneous Poisson process (NHPP)
Example Data for Compressor Failures

- Cumulative times at which compressor failed were recorded
 - Time to repair compressor neglected
- 90 times were recorded
 - Contained in file “full compressor data.txt”
 - Times are recorded in days

Example Data for Compressor Failures

- Plot $n(t)$ vs. t
 - Expect straight line if failure rate is constant

- Plot appears slightly concave
 - Reliability growth?

![Graph showing number of failures as a function of time]
Nonhomogeneous Poisson Process

- Recall that one of the assumptions leading to the Poisson distribution was that \(\lambda \) is constant.
- Can relax this assumption, and allow \(\lambda \) to vary with time.
- Leads to what is called a nonhomogeneous Poisson process.
 - Like a Poisson distribution, but with parameter

\[
\mu(t) = \int_0^t \lambda(s) \, ds
\]
Need Model for $\lambda(t)$: Rate of Occurrence of Failures (ROCOF)

- **Will consider four possibilities:**
 - **Constant:** $\lambda(t) = \lambda$
 - *Null hypothesis*
 - **Power law:** $\lambda(t) = (\alpha/\beta)(t/\beta)^{\alpha-1}$
 - *Note that $\alpha = 1$ corresponds to constant λ*
 - **Linear law:** $\lambda(t) = \lambda_o + at$
 - *$a = 0$ corresponds to constant λ*
 - **Loglinear law:** $\lambda(t) = \lambda_o e^{bt}$
 - *$b = 0$ corresponds to constant λ*
Expected Number of Failures In NHPP

- Let \(n(t) \) be number of failures that have occurred in interval \([0, t]\)

\[
E[n(t)] = \mu(t) = \int_{0}^{t} \lambda(s)ds
\]
Relationship To Poisson Process

- \(n(t) \sim \text{Poisson}[\mu(t)] \)
 - Homogeneous Poisson process (HPP) for \(\mu(t) = \lambda t \)
 - Nonhomogeneous otherwise
 - \(\mu(t) = (t/\beta)^\alpha \) for power law
 - \(\mu(t) = \lambda_0 t + (at^2)/2 \) for linear law
 - \(\mu(t) = (\lambda_0/b)(e^{bt} - 1) \) for loglinear law
Relationship To Poisson Process

• Will compare HPP to power-law, linear-law, and loglinear law processes
 – Will use Bayesian analog of chi-square statistic for absolute measure of fit
 • Calculated from posterior predictive distribution
 – Deviance information criterion (DIC) will be measure of relative fit of each model
WinBUGS Implementation

- **WinBUGS model (will show loglinear model later)**

Models for compressor failure with repair model

```c
{  
    #mu[i] <- pow(t[i]/beta, alpha) #Power-law model
    #mu[i] <- lambda.constant*t[i] #Constant model
    mu[i] <- lambda.zero*t[i] + a*pow(t[i], 2)/2 #Linear model
    n[i] ~ dpois(mu[i])  
}  
#alpha ~ dexp(1) #Diffuse priors
#beta ~ dgamma(0.0001, 0.0001)
lambda.zero ~ dgamma(0.0001, 0.0001)
lambda.constant ~ dgamma(0.0001, 0.0001)
a ~ dflat()
}
```
WinBUGS Implementation

- *Script for Bayesian chi-square test*

```r
for(i in 1:M) {
  n.rep[i] ~ dpois(mu[i])  # Value from posterior predictive distribution
  diff.obs[i] <- pow(n[i] - mu[i], 2)/mu[i]
  diff.rep[i] <- pow(n.rep[i] - mu[i], 2)/mu[i]
}
chisq.obs <- sum(diff.obs[])
chisq.rep <- sum(diff.rep[])
p.value <- step(chisq.rep - chisq.obs)
}
```
Results for Exponential Model (HPP)

- Failure rate (λ):

![Node statistics table]

![Posterior density graph]
Results for Exponential Model (HPP)

- \(p\text{-value} = 1.5 \times 10^{-4} \)
 - Very small value indicates poor fit of HPP
- DIC (for comparison with NHPP)

![Deviance Information Table]

<table>
<thead>
<tr>
<th></th>
<th>Dbar</th>
<th>Dhat</th>
<th>DIC</th>
<th>pD</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>575.5</td>
<td>574.5</td>
<td>578.5</td>
<td>1.0</td>
</tr>
<tr>
<td>total</td>
<td>575.5</td>
<td>574.5</td>
<td>578.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Results for Power-Law Process

- **Shape parameter (α):**
 - $Pr(\alpha < 1)$ is large
 - $\alpha < 1 \Rightarrow$ rate of increase in $n(t)$ decreases with increasing t
 - Compressor is getting better with time!
Results for Power-Law Process

- Scale parameter (β):

```
<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>val5.0pc</th>
<th>median</th>
<th>val95.0pc</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>22.6</td>
<td>3.808</td>
<td>0.2594</td>
<td>16.43</td>
<td>22.47</td>
<td>28.97</td>
<td>1001</td>
<td>20000</td>
</tr>
</tbody>
</table>
```
Results for Power-Law Process

- p-value = 0.82
- DIC

- Significantly less than DIC for HPP \Rightarrow power-law process is better at replicating observed data
Results for Linear Law

- λ_0:
Results for Linear Law

- a:

<table>
<thead>
<tr>
<th>Node statistics</th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>val5.0pc</th>
<th>median</th>
<th>val95.0pc</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-2.139E-6</td>
<td>3.118E-7</td>
<td>1.7E-8</td>
<td>-2.647E-6</td>
<td>-2.143E-6</td>
<td>-1.812E-6</td>
<td>6001</td>
<td>20000</td>
</tr>
</tbody>
</table>

- $Pr(a < 0)$ is large \Rightarrow reliability growth
Results for Linear Law

- p-value $= 2.5 \times 10^{-4}$
 - Linear model is poor fit

- DIC
 - Better than constant model, but worse than power-law model
Modeling Loglinear Law

- Recall model: $\lambda(t) = \lambda_o e^{bt}$
- Leads to $\mu(t) = (\lambda_o/b)(e^{bt} - 1)$
 - Parameter b can take on any real value in theory
 - Values very near zero cause numerical difficulties
 - Pragmatic solution
 - Run two cases
 - Case 1: $\text{uniform}(-1, 0)$ prior on b (reliability growth)
 - Case 2: $\text{uniform}(0, 1)$ prior on b (aging)
Loglinear Law – Case 1 (Reliability Growth)

- Results
Loglinear Law – Case 1 (Reliability Growth)

- p-value $= 2.8 \times 10^{-4}$
 - Poor fit
- DIC
 - About the same as linear law, worse than power law
Loglinear Law – Case 2 (Aging)

- **Could not run this case**
 - *Undefined real result traps occurred in WinBUGS with uniform(0, 1) prior on b*
 - *Data suggest negative value for b*
 - *Sampling pushes b toward zero in attempt to reach negative values*
 - *Small values of b in denominator cause machine overflow*
Conclusions About Compressor Failure Data

- Data indicate reliability growth is occurring (decreasing failure rate)
- Linear model shows evidence for reliability growth but is poor at replicating observed data
- Power-law model shows evidence for reliability growth and is good at replicating observed data
- Loglinear model suggests reliability growth but is poor fit to data
 - Difficulty implementing this model in WinBUGS
Overall Conclusions

• Bayesian analysis of time-dependent reliability (with and without repair) is feasible
• MCMC simulation is easy with WinBUGS/OpenBUGS
 – WinBUGS is freely available, open-source software
• Can handle variety of models
• Allows for model validation, a crucial component of the analysis
 – Compare absolute fit with Bayesian analog of chi-square statistic and relative fit with DIC
• Can factor in prior information regarding model parameters if desired
Suggested Future Work

• Investigate better ways of implementing loglinear model in WinBUGS

• Investigate nonparametric hazard models within the Bayesian framework
 – Can handle non-monotonic failure intensity

• Investigate Bayesian time-series models
 – Cyclic data

• Benchmark methods against more datasets